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Abstract

Size and surface properties such as catalysis, optical quantum dot photoluminescense, and surface plasmon
resonances depend on the coordination and chemistry of metal and semiconducting nanoclusters. Such
coordination-dependent properties are quantified herein via “magic formulas” for the number of shells, n, in the
cluster. We investigate face-centered cubic, body-centered cubic, simple cubic clusters, hexagonal close-packed
clusters, and the diamond cubic structure as a function of the number of cluster shells, n. In addition, we examine the
Platonic solids in the form of multi-shell clusters, for a total of 19 cluster types. The number of bonds and atoms and
coordination numbers exhibit magic number characteristics versus n, as the size of the clusters increases. Starting with
only the spatial coordinates, we create an adjacency and distance matrix that facilitates the calculation of topological
indices, including the Wiener, hyper-Wiener, reverse Wiener, and Szeged indices. Some known topological formulas
for some Platonic solids when n = 1 are computationally verified. These indices have magic formulas for many of the
clusters. The simple cubic structure is the least complex of our clusters as measured by the topological complexity
derived from the information content of the vertex-degree distribution. The dispersion, or relative percentage of
surface atoms, is measured quantitatively with respect to size and shape dependence for some types of clusters with
catalytic applications.
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Introduction
Magic numbers and formulas for nanoclusters have a long
history dating to the prescient publication by van Harde-
veld and Hartog in 1969 [1]. Their insights predated the
nanoscience era. Since then, we have seen magic num-
bers appear in 2D polygons and 3D polyhedra [2], carbon
fullerenes [3], and in a limited scope again in clusters [4].
Such diverse materials such as silicon [5], boron [6], and
in fact over 1000 publications from the indexing service
“Web of Science” refer to magic numbers in clusters. The
study of the size and shape of nanoclusters is important to
today’s society, since this determines not only the intrinsic
physical and chemical properties, but also the relevance
for optical, catalytic, electronic, andmagnetic applications
[7]. Our aim is to update the database of this knowledge
with current relationships and data, now that we have
entered the nano realm.
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The occurrence of magic numbers in nanoclusters has
to do primarily with the formation of shells of atoms upon
a fundamental cell. When the number of atoms com-
pletes a full shell, we find a unique set of numbers, termed
“magic,” that defines the shells of atoms. A cluster is rep-
resented by a graph with the atoms as vertices and the
bonds as edges. It consists of nested shells like layers of
an onion. We define the numbers of layers as n and dis-
cover the mathematical relationships of nearest neighbor
coordination numbers, bonds, the total number of atoms,
and some topological indices as a function of n. The origi-
nal paper by van Hardeveld and Hartog [1] considered fcc,
bcc, and hcp clusters. The reference by Teo and Sloane
[2] considers polyhedra and Platonic solids but neglects
the relationship of nearest neighbor coordination num-
bers. We add to this database by looking at simple cubic,
diamond cubic, and the Platonic solids, in addition to the
topological properties and dispersion of the clusters.
The transition in size from bulk to clusters of a few

atoms is really about the relationship of the surface atoms
as compared to bulk atoms. Properties such as catalytic
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Fig. 1 Shells of atoms for n = 3 for A. fcc cube and n = 2 B. dodecahedron. In B, the green atoms (12) refer to cn = 5 within the shell

chemistry, surface plasmon resonance, and optical quan-
tum dot photoluminescence [8] are affected by the coor-
dination and number of surface atoms. The dispersion or
relative percentage of surface atoms is determined by the
ratio of surface atoms to the total number of atoms, as has
been considered previously [9]. Our analysis will deter-
mine the relative ranking of the dispersion in terms of
cluster geometry.
Topological indices started withWiener’s original paper

regarding his index and the boiling points of paraffin [10].
It was not until some time later that Hosoya introduced
a mathematical formalism to analyze topological indices
[11]. We have previously introduced topological indices

Table 1 Magic formulas for the rhombic dodecahedron

fcc rhombic dodecahedron n = 4

Atoms 8n3 + 6n2 + 2n + 3, n ≥ 1 odd

8n3 + 6n2 + 2n + 1, n ≥ 2 even

Bonds 48n3 + 12, n ≥ 1 odd;

48n3, n ≥ 2 even

cn = 3 8, n ≥ 2 even

cn = 4 6, n ≥ 1

cn = 5 12n − 12, n ≥ 1 odd

12n − 24, n ≥ 2 even

cn = 7 12n2 − 12n + 12, n ≥ 1

cn = 10 12n − 12, n ≥ 1 odd

12n, n ≥ 2 even

cn = 11 12n2 − 24n + 12, n ≥ 1 odd

12n2 − 24n, n ≥ 2, even

cn = 12 8n3 − 18n2 + 14n − 3, n ≥ 1 odd

8n3 − 18n2 + 14n − 1, n ≥ 2 even

and nanoclusters [12]. At this writing, there exist many
indices, some of which depend on the adjacency or dis-
tance matrix. We show here that in many of the cluster
shapes, magic mathematical relationships exist for the
four indices as a function of n and the number of shells.

Methods
For each of the types of clusters we study, we create a
computational algorithm which determines the atomic
coordinates of the clusters. We then proceed to create an
adjacency matrix and a distance matrix defined as follows.
An adjacency matrix A is created where we define i and
j as nearest neighbors and separate them from the rest
by requiring that rij < rc, where rc is a threshold value,
slightly above the nearest neighbor distance, but less than
the second neighbor distance. Thus,

A(i, j) =
{
1 if rij < rc and i �= j
0 otherwise (1)

where rij is the Euclidean distance between atom i and
atom j. An appropriate value for rc is 1.32 · rmin, where

Table 2 Magic formulas for the fcc cube

fcc cube n = 2

Atoms 4n3 + 6n2 + 3n + 1, n ≥ 1

Bonds 24n3 + 12n2, n ≥ 1

cn = 3 8, n ≥ 1

cn = 5 12n − 12, n ≥ 1

cn = 8 12n2 − 12n + 6, n ≥ 1

cn = 12 4n3 − 6n2 + 3n − 1, n ≥ 1
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Table 3 Magic formulas for the octahedron

fcc octahedron n = 6

Atoms 2
3n

3 + 2n2 + 7
3n + 1, n ≥ 1

Bonds 4n3 + 6n2 + 2n, n ≥ 0

cn = 4 6, n ≥ 1

cn = 7 12n − 12, n ≥ 1

cn = 9 4n2 − 12n + 8, n ≥ 1

cn = 12 2
3n

3 − 2n2 + 7
3n − 1, n ≥ 1

rmin is the smallest bond length. This applies to the dodec-
ahedral structure, as well as the others we study. The
coordination numbers of the cluster are simply the num-
ber of non-zero elements in a column of the adjacency
matrix. The distance matrix is defined as

D(i, j) =
{
0 i = j
dij i �= j (2)

where dij is the length of the shortest path in the
graph from i to j. An efficient algorithm for the calcu-
lation of the distance matrix from the adjacency matrix
exists [13]. Using these definitions, we can calculate the
Wiener index, W (G), the hyper-Wiener index, WW (G),
the reverse Wiener index rW (G), and the Szeged index,
Sz(G), as previously detailed [14]. These calculations use
the the same algorithm that we have previously used for
topological indices and nanoclusters [12].
Previous authors have offered proofs of magic relation-

ships, which we condense in our notation, relevant for
the work presented here [1, 2]. Since we create nearest
neighbor adjacency matrices, we know the coordination
number cni of vertex i by summing the elements of A(i, :).
Our structure consists of n+1 shells numbered 0, 1, . . . , n.
Let Ncni(n) be the number of atoms with coordination cni
where 1 ≤ cni ≤ cnM with cnM the maximal coordina-
tion in the cluster. Then the total number of atoms in the
cluster is given by

Table 4 Magic formulas for the cuboctahedron

fcc cuboctahedron n = 4

Atoms 10
3 n

3 + 5n2 + 11
3 n + 1, n ≥ 1

Bonds 20n3 + 12n2 + 4n, n ≥ 0

cn = 5 12, n ≥ 1

cn = 7 24n − 24, n ≥ 1

cn = 8 6n2 − 12n + 6, n ≥ 1

cn = 9 4n2 − 12n + 8, n ≥ 1

cn = 12 10
3 n

3 − 5n2 + 11
3 n − 1, n ≥ 1

Table 5 Magic formulas for the truncated octahedron

fcc truncated octahedron n = 2

Atoms 16n3 + 15n2 + 6n + 1, n ≥ 1

Bonds 96n3 + 42n2 + 6n, n ≥ 0

cn = 6 24, n ≥ 1

cn = 7 36n − 36, n ≥ 1

cn = 8 6n2 − 12n + 6, n ≥ 1

cn = 9 24n2 − 24n + 8, n ≥ 1

cn = 12 16n3 − 15n2 + 6n − 1, n ≥ 1

NT (n) =
cnM∑
cni=1

Ncni(n). (3)

The surface atoms in the outer shell n have a set of
bondings less than the bulk coordination. Thus the maxi-
mal coordination for surface atoms is cns < cnM, and the
number of surface atoms is

NS(n) =
cns∑

cni=1
Ncni(n). (4)

This holds if all the non-surface vertices have coordina-
tion larger than cns, which is true for all clusters, but note
the discrepancy for the dodecahedra below. We deter-
mine theNcni(n) by counting the columns of the adjacency
matrix whose sum is cni. Note that our cluster coordinate
algorithm is built by shells, so that each subsequent shell
contains all the previous lower values of n. In Fig. 1, we
illustrate the shells of the clusters for an fcc cube and a
dodecahedron. In addition, the number of bonds in the
cluster is

NB(n) = 1
2

cnM∑
cni=1

cni · Ncni(n), (5)

Table 6 Magic formulas for the bcc cube

bcc cube

Atoms 2n3 + 3n2 + 3n + 1, n ≥ 1

Bonds 14n3 + 3n2 + 3n, n ≥ 1

cn = 4 8, n ≥ 1

cn = 6 12n − 12, n ≥ 1

cn = 8 1, n = 1; 0, n �= 1

cn = 9 6n2 − 12n + 6, n ≥ 1

cn = 11 8, n ≥ 2

cn = 12 12n − 24, n ≥ 2

cn = 13 6n2 − 24n + 24, n ≥ 2

cn = 14 2n3 − 9n2 + 15n − 9, n ≥ 2
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Table 7 Magic formulas for the bcc octahedron

bcc octahedron n = 4

Atoms 8
3n

3 + 6n2 + 16
3 n + 1, n ≥ 1

Bonds 56
3 n

3 + 18n2 + 40
3 n, n ≥ 0

cn = 5 6, n ≥ 1

cn = 7 4n2 + 4n, n ≥ 0

cn = 8 12n − 12, n ≥ 1

cn = 10 4n2 − 12n + 8, n ≥ 1

cn = 13 4n2 − 4n, n ≥ 1

cn = 14 8
3n

3 − 6n2 + 16
3 n − 1, n ≥ 1

where NB(n) is the number of bonds and cnM is the maxi-
mum coordination. The factor of 1/2 comes about because
of the pairwise nearest neighbor bonding. Thismagic rela-
tionship appears not to have been considered in previous
publications, with the exception of a few clusters exam-
ined in [4]. We also comment that Teo and Sloane have
derived the total number of atoms, surface atoms, and
interior atoms for clusters as follows [2]:

NT (n) = αn3 + 1
2
βn2 + γn + 1 n ≥ 0 (6)

where NT (n) is the total number of atoms, and

α = C/6 (7)

Table 8 Magic formulas for the bcc truncated octahedron

bcc truncated octahedron n = 4

Atoms 8n3 + 9
2n

2 + 5
2 , n ≥ 1 odd

8n3 + 9
2n

2 + 3n + 1, n ≥ 2 even

Bonds 56n3 − 27
2 n

2 − 6n + 27
2 , n ≥ 1 odd

56n3 + 27
2 n

2 + 3n, n ≥ 2 even

cn = 4 0, n ≥ 1 odd

6n + 12, n ≥ 2 even

cn = 6 24, n ≥ 3 odd

12n − 24, n ≥ 2 even

cn = 7 6n2 + 12n − 34, n ≥ 3 odd

6n2 − 12n + 8, n ≥ 2 even

cn = 8 6n − 6, n ≥ 1 odd; 0, n even

cn = 9 3n2 − 12n + 15, n ≥ 3 odd

3n2 − 6n + 6, n ≥ 2 even

cn = 10 6n2 − 12n + 6, n ≥ 1 odd

6n2, n ≥ 2 even

cn = 12 12n − 12, n ≥ 1 odd

6n, n ≥ 2 even

cn = 13 9n2 − 24n + 15, n ≥ 1 odd

9n2 − 18n, n ≥ 2 even

cn = 14 8n3 − 39
2 n

2 + 18n − 11
2 , n ≥ 1 odd

8n3 − 39
2 n

2 + 15n − 1, n ≥ 2 even

Table 9 Magic formulas for the bcc cuboctahedron

bcc cuboctahedron n = 3

Atoms 5
3n

3+7n2+ 34
3 n+7, n ≥ 1 odd

5
3n

3+7n2+ 25
3 n+1, n ≥ 2 even

Bonds 35
3 n

3 + 34n2 + 112
3 n + 15, n ≥

1 odd
35
3 n

3+34n2+ 67
3 n, n ≥ 2 even

cn = 4 12, n ≥ 1 odd; 0, n even

cn = 6 12n− 12, n ≥ 1 odd; 0, n even

cn = 7 n2 − 4n + 3, n ≥ 1 odd

n2 + 14n, n ≥ 2 even

cn = 9 3n2 + 3, n ≥ 1 odd

3n2 − 6n, n ≥ 2 even

cn = 10 n2 + 4n + 3, n ≥ 1, odd

n2 − 2n + 12, n ≥ 2, even

cn = 12 12n − 24, n ≥ 2 even; 0, n odd

cn = 13 4n2 − 4, n ≥ 3 odd

4n2 − 12n + 14, n ≥ 2 even

cn = 14 5
3n

3−2n2− 2
3n+2, n ≥ 1 odd

5
3n

3−2n2+ 7
3n−1, n ≥ 2 even

where C is the number of tetrahedral cells into which the
polyhedron is divided, and

β = 1/2Fs (8)

where Fs is the number of triangular faces on the surface,
and

γ = Fs/4 + Vi + 1 − C/6 (9)

where Vi is the number of vertices in the interior. They
also show that

NS(n) = βn2 + 2 n ≥ 1; NS(0) = 1 (10)

and

NI(n) = NT (n) − NS(n), (11)

Table 10 Magic formulas for the bcc rhombic dodecahedron

bcc rhombic dodecahedron n = 3

Atoms 4n3 + 6n2 + 4n + 1, n ≥ 1

Bonds 28n3 + 18n2 + 4n, n ≥ 0

cn = 5 6, n ≥ 1

cn = 7 8, n ≥ 1

cn = 8 24n − 24, n ≥ 1

cn = 10 12n2 − 24n + 12, n ≥ 2

cn = 14 4n3 − 6n2 + 4n − 1, n ≥ 1
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Table 11 Magic formulas for the hexagonal bipyramid

Hexagonal bipyramid n = 4

Atoms 4n3 + 6n2 + 4n + 1, n ≥ 1

Bonds 24n3 + 15n2 + 3n, n ≥ 0

cn = 3 2, n ≥ 1

cn = 5 6, n ≥ 1

cn = 6 3n + 3, n ≥ 1

cn = 7 24n − 24, n ≥ 1

cn = 8 6n2 − 15n + 9, n ≥ 1

cn = 9 6n2 − 12n + 6, n ≥ 1

cn = 12 4n3 − 6n2 + 4n − 1, n ≥ 1

where NI(n) is the number of interior atoms. This infor-
mation (Eq. (11)) is contained in the adjacency matrix,
as well as Eqs. (3, 4, 5). These equations are a check of
the results from the adjacency matrix data. For centered
polyhedra, we also have

NI(n) = NT (n − 1), (12)

and from Eq. (11), we have

NT (n) = NS(n)+NS(n−1)+ ...+NS(1)+NS(0). (13)

From these equations, we can derive the magic formu-
las for each of the clusters as follows. After computing the
topological (0, 1)-adjacency matrix A for a cluster with n
shells as described, we know that its size N = NT (n) indi-
cates the total number of atoms. The sum of the entries in
column i gives the number of bonds cni(n) for atom i and

Table 12 Magic formulas for the truncated hexagonal bipyramid

Truncated hexagonal bipyramid n = 4

Atoms 7
2n

3 + 21
4 n

2 + 7
2n + 3

4 , n ≥ 3 odd
7
2n

3 + 21
4 n

2 + 7
2n + 1, n ≥ 2 even

Bonds 21n3 + 27
2 n

2 + 3n − 3
2 , n ≥ 3 odd

21n3 + 27
2 n

2 + 3n, n ≥ 2 even

cn = 5 6, n ≥ 2

cn = 6 3n + 9, n ≥ 1

cn = 7 18n − 24, n ≥ 1

cn = 8 9
2n

2 − 9n + 9
2 , n ≥ 3, odd

9
2n

2 − 9n + 3, n ≥ 2, even

cn = 9 6n2 − 12n + 6, n ≥ 3, odd

6n2 − 12n + 8, n ≥ 2, even

cn = 12 7
2n

3 − 21
4 n

2 + 7
2n − 3

4 , n ≥ 3 odd
7
2n

3 − 21
4 n

2 + 7
2n − 1, n ≥ 2 even

Table 13 Magic formulas for the icosahedron

Icosahedron n = 4

Atoms 10
3 n

3 + 5n2 + 11
3 n + 1, n ≥ 1

Bonds 20n3 + 15n2 + 7n, n ≥ 1

cn = 6 12, n ≥ 1

cn = 8 30n − 30, n ≥ 1

cn = 9 10n2 − 30n + 20, n ≥ 1

cn = 12 10
3 n

3 − 5n2 + 11
3 n − 1, n ≥ 1

counting the the number of column sums equal to cni(n)

gives obviously Ncni(n). Since we know that these depend
on n as a polynomial of degree at most 3, we can com-
pute NT (n) and cni(n) for 4 consecutive values of n, say
n = n0 + j, j = 0, 1, 2, 3. A simple interpolating polyno-
mial will then give the polynomial coefficients. It has to
be verified that by increasing n0, which is usually equal
to 1, the formulas do not change. If the formulas become
stable from n0 on, then they hold for all n ≥ n0. In some
cases, the polynomial relation only holds for the even n
values or the odd ones. For example, for the fcc rhombic
dodecahedron (Table 1), the successive shells have eight
atoms with coordination 3 when n ≥ 2 is even, and none
if n is odd. In such cases different polynomial relations
will hold for n even and n odd, but the data are used for
n = n0+j, j = 0, 2, 4, 6 with n0 odd (e.g., n0 = 1) or n0 even
(n0 = 2). To get the exact rational coefficients, one needs
to solve the Vandermonde system for the coefficients in
exact arithmetic using MATLAB’s symbolic toolbox. This
is how the Tables 2, 3, 4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, and 19 are computed. In the next section,
we determine magic formulas for NT (n), NB(n), and for
Ncni(n) according to the proscribed recipe.
The dispersion (fraction exposed, FE) of the surface

atoms is defined as:

Table 14 Magic formulas for the dodecahedron

Dodecahedron n = 3

Atoms 10n3 + 15n2 + 7n + 1, n ≥ 1

Bonds 40n3 + 45n2 + 17n, n ≥ 0

Surface atoms 30n2 + 2, n ≥ 1

cn = 6 30n + 2, n ≥ 1

cn = 7 Bulk 12n − 12, n ≥ 2

cn = 7 Surface 30n2 − 30n, n ≥ 2

cn = 8 10n3 − 15n2 − 25n + 30, n ≥ 1

cn = 9 20n − 20, n ≥ 1

cn = 12 1, n ≥ 1
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Table 15 Magic formulas for the fcc tetrahedron

fcc tetrahedron n = 6

Atoms 1
6n

3 + n2 + 11
6 n + 1, n ≥ 1

Bonds n3 + 3n2 + 2n, n ≥ 1

cn = 3 4, n ≥ 1

cn = 6 6n − 6, n ≥ 1

cn = 9 2n2 − 6n + 4, n ≥ 1

cn = 12 1
6n

3 − n2 + 11
6 n − 1, n ≥ 1

FE = NS
NT

· 100% (14)

where NS is the number of surface atoms, and NT is the
total number of atoms [9]. We can compare dissimilar
clusters by defining the relative cluster size as:

drel = b(NT )1/3; b = d−1
at ·

(
6Vu
πnu

)1/3
(15)

where dat is the covalent atomic diameter, Vu is the vol-
ume of the unit cell, and nu is the number of atoms in the
unit cell. The crystal structure constant b equals 1.105 for
fcc and hcp clusters, 1.137 for bcc clusters [1], 1.488 for
simple cubic clusters, and 1.517 for diamond cubic clus-
ters. As is shown above, the formula for FE is a ratio of a
quadratic to a cubic for the clusters and can bemodeled by
a power law curve fit versus drel. The variable drel allows
us to compare different clusters to one another without
regard to the crystal structure. For some of the Platonic
clusters, where there is no crystal unit cell, we use N1/3

T as
the variable.

Results and Discussion
The study of the size and shape of metal nanoclusters has
evolved since its infancy two decades ago. Table 20 shows
some relevant progress as of 2018.
In the Table, we list primarily transition metals, not

alloys or compounds, with the exception of the truncated
hexagonal bipyramid, where only Fe2O3 was found. There
has been more synthesis of gold clusters than any other
element, due to its properties and stability. In the sub-
sections which follow, we limit our discussion to specific
topics related to magic formulas and types of clusters.

Table 16 Magic formulas for the bcc tetrahedron

bcc tetrahedron n = 4

Atoms 1
3n

3 + 3
2n

2 + 13
6 n + 1, n ≥ 1

Bonds 2
3n

3 + 2n2 + 4
3n, n ≥ 1

cn = 1 4, n ≥ 1

cn = 2 6n − 6, n ≥ 1

cn = 3 2n2 − 6n + 4, n ≥ 1

cn = 4 1
3n

3 − 1
2n

2 + 13
6 n − 1, n ≥ 1

Table 17 Magic formulas for the diamond cubic

Diamond cubic n = 3

Atoms 8n3 + 6n2 + 3n − 3, n ≥ 1

Bonds 16n3

cn = 1 12n − 8, n ≥ 1

cn = 2 12n2 − 12n + 6, n ≥ 1

cn = 4 8n3 − 6n2 + 3n − 1, n ≥ 1

FCC Clusters
Eight of the transition metals crystallize in the fcc struc-
ture, see Table 21 below, including the plasmonic noble
metals and important catalytically active elements. The
vast majority of nanocluster synthesis has been with
these elements. References of the synthesis of the fcc
elements with various shapes and sizes is given in
Table 21.
Alloys of these elements are also of interest, but ref-

erences of these are too numerous to be cited here.
Frequently, the common shapes synthesized are cubes,
octahedra, cuboctahedra, and icosahedra. Typically, clus-
ters with (111) facets are easier to synthesize, since the
(111) surface usually has a lower energy than the (100)
surface [7]. We find for the fcc rhombic dodecahedron
that there exist even and odd formulas. These agree with
those in [1], if one replaces the “n” in our even formu-
las by 2(m − 1). The formulas for fcc cuboctahedra listed
in [24] produce the same magic numbers as ours but are
shifted by 1 since they number shells as n = 1, 2, . . . and
we use the numbering n = 0, 1, . . .. Our magic formulas
agree with those in [2, 4], and in deference to the ear-
lier published work, and in maintaining continuity of the
mathematics, we use the [2, 4] notation. The 5 fcc cluster
shapes and their associated magic formulas appear below.

BCC Clusters
Seven of the transition metals in the periodic table have
the bcc structure, see Table 21. Of the magnetic ele-
ments Fe, Co, and Ni, only iron is bcc. Nanocubes of iron
appear to be the only bcc cluster shape synthesized so far

Table 18 Magic formulas for the simple cubic

Simple cube n = 2

Atoms 8n3

Bonds 24n3 − 12n2

cn = 3 8

cn = 4 24n − 24, n ≥ 2

cn = 5 24n2 − 48n + 24, n ≥ 2

cn = 6 8n3 − 24n2 + 24n − 8, n ≥ 2
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Table 19 Magic formulas for the decahedron

Decahedron n = 4

Atoms 5
6n

3 + 5
2n

2 + 8
3n + 1

Bonds 5n3 + 15
2 n

2 + 7
2n

cn = 4 5, n ≥ 1

cn = 6 5n − 3, n ≥ 1

cn = 8 10n − 10, n ≥ 1

cn = 9 5n2 − 15n + 10, n ≥ 1

cn = 12 5
6n

3 − 5
2n

2 + 8
3n − 1, n ≥ 1

[25]. Although the bulk structure of iron is bcc, fcc nan-
oclusters have been synthesized [26]. This reference also
analyzes the thermodynamic stability of the clusters. Here
we present 5 bcc cluster shapes and their associated magic
formulas.

HCP Clusters
Twelve transition metals have the hcp structure, see
Table 21. However, many of these oxidize, or lack com-
pelling scientific interest to be synthesized.With regard to
the hexagonal bipyramidal cluster shape in Table 11, gold
clusters have been synthesized [27]. The related truncated
hexagonal bipyramid seems only to have been formed by
α − Fe2O3 [28].

Platonic Clusters
The Platonic solids have been known since the ancient
Greeks. They include the cube, tetrahedron, octahedron,
icosahedron, and dodecahedron. In previous tables, we

have listed magic formulas for fcc and bcc cubes and
octahedra. Here we list the formulas for the icosahedron,
dodecahedron, tetrahedron, and body-centered tetrahe-
dron. As previously mentioned in the “Methods” section,
the dodecahedron is unique for the clusters analyzed
here, in that cns = 7 refers to both surface and bulk
atoms. We showed in Fig. 1b that the outer shell con-
tains both fivefold and sixfold coordinated atoms. When
a shell becomes internal, those five- and sixfold coor-
dinated atoms become seven- and eightfold coordinated
with bonds to a shell on either side. Also, the sixfold
coordinated outside shell atoms are sevenfold coordinated
by bonding to the shell inside. Thus there are sevenfold
surface and bulk coordinated atoms for the dodecahe-
dron. Each shell in the structure has 12 fivefold shell
atoms, which produce 12n − 12 bulk sevenfold coordi-
nated atoms. The rest of the sevenfold coordination are
surface atoms.
Gold nanoclusters have been shown to take the Platonic

shapes [29]. This reference includes the cube, tetrahedron,
octahedron, and icosahedron. Later, the golden dodecahe-
dron nanocluster was also synthesized [30]. Here, we show
both the regular tetrahedron, which is “fcc-like” in that
cM = 12 as in fcc structures, and the body-centered tetra-
hedron in Table 16, where the green atoms have single
bonds. The Platonic magic formulas are presented below.

Diamond Cubic, Simple Cubic, and Decahedron Clusters
The elements silicon and germanium have the diamond
cubic lattice, as well as the diamond allotrope of carbon.
In particular, hydrogen-terminated silicon has received
recent interest. The (100) hydrogen-terminated surface,

Table 20 Shape-dependent synthesis for nanoclusters circa 2018
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leading to cubic shapes in clusters, has been determined
to have the lowest energy [31]. The synthesis of Si-H
nanocubes of 8 − 15 nm in size has been achieved [32].
Table 17 shows a diagram of the hydrogen-terminated Si-
H clusters, with single-bonded hydrogen atoms in green.
If a nanocluster takes the diamond cubic shape, there will
be single dangling bonds, which need to be passivated
to help maintain the structure. Looking at the magic for-
mulas, we suggest the composition of such Si-H clusters
is Si8n3+6n2−9n+5H12n−8, where n is the number of shells
in the cluster. Such semiconductor quantum dots may
be of interest for optical properties, and the variation in
band-gap with the size of hydrogen-terminated clusters
has been determined to be inversely proportional to the
cluster size [33].
The simple cubic lattice structure has previously been

analyzed by others [4], although without the detail we
provide. We have previously studied the d-dimensional
hypercube forms [14]. Polonium is the only element which
takes the simple cubic structure. It is radioactive, which
may lead to specialized applications. Here we present
the diamond cubic, simple cubic, and decahedral cluster
magic formulas.

Magic Topological Formulas
Measured structural complexity in crystals can give us an
idea of the simplicity or complexity of the structure and
the proper use can rank relevant structures. For such rank-
ings, it is helpful to consider the graphical description of
the crystal lattice, as mentioned in the “Methods” section.
The topological complexity for crystal structures is mea-
sured by the vertex-degree distribution of the graph, Ivd
[34], using the software ToposPro, version 5.3.2.2 [35]:

Ivd =
v∑

i=1
ai · log2 ai (16)

where ai is the degree (coordination) of the ith vertex
and summation proceeds along all v vertices, of the quo-
tient graph. This parameter uses an infinite crystal as
opposed to the clusters we have been considering, but is
useful to measure the relative complexity of different crys-
tal structures. Thus, the higher the number, or the more
information content in the graph, the more complex it is.
In Table 22, we show values of Ivd obtained fromToposPro
derived from cif files for crystal structures in the Crystal-
lographic Open Database. Polonium is the only element
that crystallizes in the simple cubic structure and the value
is zero, i.e., the quotient graph has one vertex and zero
edges, in agreement with what we expect, that the simple
cubic structure is indeed the least complex structure. The
salt, NaCl, is also shown, with two elements in the simple
cubic structure, along with silicon in the diamond cubic,
gold in fcc, iron in bcc, and cobalt in hcp structures. We

Table 21 Structure of the transition metals [15]

Sc Ti V Cr Mn Fe Co Ni Cu Zn
hcp hcp bcc bcc cubic bcc hcp fcc [16] fcc [17] hcp

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
hcp hcp bcc bcc hcp hcp fcc [18] fcc [19] fcc [20] hcp

La Hf Ta W Re Os Ir Pt Au Hg
hex hcp bcc bcc hcp hcp fcc [21] fcc [22] fcc [23] rhomb

mention that another complexity measure related to the
Shannon entropy [34] is not useful because this measure
for all the elements is identically zero.
A similar method as described in the “Methods” section

to determine magic formulas can be applied for the
magic formulas describing the topological indices. Only
here, the degrees of the polynomials are 7, 8, or 9,
so their values for at least 10 consecutive n-values
need to be computed. Then an interpolation problem
of a higher degree gives the result. Since solving a lin-
ear system of size 10 × 10 with the symbolic toolbox
requires some time, all the coefficients for the topolog-
ical indices can be computed simultaneously using mul-
tiple right-hand sides to get the coefficients of all the
polynomials.
Magic formulas for the topological indices are detailed

in Tables 23, 24, and 25. The four indices we analyze
depend only on n, the number of shells in the cluster.
Looking at the results, the simple cubic lattice as the
least complex structure, also has the “simplest” formu-
las. In spite of our efforts, we are unable to solve for the
Szeged index of bcc cubes. No stable solution was found.
In general, fcc structures are easier to solve for topologi-
cal formulas. We were not able to solve any hcp structures
and only a few bcc structures. This may be related to the
topological complexity as the fcc lattice is simpler than the
bcc or hcp, see Table 22. Within the tables, we provide
formulas for the cuboctahedron, icosahedron, and deca-
hedron. We previously [12] provided tables of numeric
data for these indices, with the caveat that the cubocta-
hedron in [12] had different magic numbers. Here we see

Table 22 Topological complexity

Structure Ivd

Po simple cubic 0.000

Si diamond cubic 16.000

NaCl 31.020

Au fcc 43.020

Fe bcc 53.303

Co hcp 86.039
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Table 23 Magic topological formulas for clusters

Simple cubic
Wiener 64n7 − 16n5

Reverse Wiener 128n7 − 96n6 + 16n5 − 24n4 + 12n3

HyperWiener 224
3 n8 + 32n7 − 88

3 n
6 − 8n5 + 8

3n
4

Szeged 256n9 − 64n7

fcc cube
Wiener 956

105n
7 + 478

15 n
6 + 1357

30 n5 + 110
3 n4 + 589

30 n
3 + 97

15n
2 + 36

35n
Reverse Wiener 1564

105 n
7 + 602

15 n
6 + 1343

30 n5 + 70
3 n

4 + 43
15n

3 − 59
30n

2 − 36
35n

HyperWiener 59
10n

8 + 2956
105 n

7 + 1089
20 n6 + 701

12 n
5 + 817

20 n
4 + 1153

60 n3 + 53
10n

2 + 5
7n

Szeged 14822
945 n9 + 2099

35 n8 + 30781
315 n7 + 941

10 n
6 + 1073

18 n5 + 251
10 n

4 + 12629
1890 n

3 + 29
35n

2 + 32
105n

bcc cube
Wiener 12

7 n
7 + 6n6 + 59

5 n
5 + 29

2 n
4 + 34

3 n
3 + 11

2 n
2 + 121

105n
Reverse Wiener 16

7 n
7 + 6n6 + 46

5 n
5 + 11

2 n
4 + 2

3n
3 − 5

2n
2 − 121

105n
HyperWiener 71

84n
8 + 89

21n
7 + 53

5 n
6 + 253

15 n
5 + 421

24 n
4 + 143

12 n
3 + 4211

840 n
2 + 137

140n
Szeged NA

fcc octahedron
Wiener 59

420n
7 + 59

60n
6 + 179

60 n
5 + 61

12n
4 + 77

15n
3 + 44

15n
2 + 26

35n
Reverse Wiener 383

1260n
7 + 101

60 n
6 + 743

180n
5 + 59

12n
4 + 104

45 n
3 − 3

5n
2 − 26

35n
HyperWiener 173

3360n
8 + 27

56n
7 + 463

240n
6 + 87

20n
5 + 2891

480 n
4 + 41

8 n
3 + 699

280n
2 + 19

35n
Szeged 397

5040n
9 + 397

560n
8 + 347

120n
7 + 841

120n
6 + 891

80 n
5 + 2897

240 n
4 + 2801

315 n
3 + 1769

420 n
2 + 1n

fcc cuboctahedron
Wiener 204

35 n
7 + 102

5 n6 + 168
5 n5 + 33n4 + 98

5 n
3 + 33

5 n
2 + 34

35n
Reverse Wiener 1664

315 n
7 + 194

15 n
6 + 713

45 n
5 + 7n4 − 52

45n
3 − 44

15n
2 − 34

35n
HyperWiener 487

140n
8 + 589

35 n
7 + 433

12 n
6 + 183

4 n5 + 548
15 n

4 + 357
20 n

3 + 103
21 n

2 + 4
7n

Szeged 68867
7560 n

9 + 12589
336 n8 + 3269

45 n7 + 10403
120 n6 + 23759

360 n5 + 1475
48 n4 + 30929

3780 n
3 + 467

420n
2 + 1

15n

Table 24 Magic topological formulas for clusters, continued

fcc truncated octahedron
Wiener 31813

140 n7 + 29741
60 n6 + 1925

4 n5 + 3259
12 n4 + 469

5 n3 + 281
15 n

2 + 12
7 n

Reverse Wiener 39867
140 n7 + 27859

60 n6 + 1411
4 n5 + 1445

12 n4 + 41
5 n

3 − 101
15 n

2 − 12
7 n

HyperWiener 258927
1120 n8 + 115583

168 n7 + 211547
240 n6 + 19453

30 n5 + 144307
480 n4 + 2099

24 n3 + 12373
840 n2 + 39

35n
Szeged 1120559

1080 n9 + 598387
210 n8 + 640481

180 n7 + 80023
30 n6 + 478073

360 n5 + 6677
15 n4 + 13388

135 n3 + 489
35 n

2 + 16
15n

bcc rhombic dodecahedron
Wiener 293

35 n
7 + 293

10 n
6 + 93

2 n
5 + 43n4 + 721

30 n
3 + 77

10n
2 + 23

21n
Reverse Wiener 267

35 n
7 + 187

10 n
6 + 43

2 n
5 + 9n4 − 61

30n
3 − 37

10n
2 − 23

21n
HyperWiener 4187

840 n
8 + 2533

105 n
7 + 1011

20 n6 + 367
6 n5 + 5549

120 n
4 + 647

30 n
3 + 601

105n
2 + 9

14n
Szeged 29447

1890 n
9 + 110993

1680 n8 + 158141
1260 n7 + 16897

120 n6 + 18109
180 n5 + 10931

240 n4 + 23221
1890 n

3 + 221
140n

2 + 2
105n

Icosahedron
Wiener 118

21 n
7 + 59

3 n
6 + 97

3 n
5 + 95

3 n
4 + 55

3 n
3 + 17

3 n
2 + 5

7n
Reverse Wiener 346

63 n
7 + 41

3 n
6 + 154

9 n5 + 25
3 n

4 + 1
9n

3 − 2n2 − 5
7n

HyperWiener 311
96 n

8 + 883
56 n

7 + 1627
48 n6 + 43n5 + 3263

96 n4 + 127
8 n3 + 31

8 n
2 + 5

14n
Szeged 46049

6048 n
9 + 46049

1344 n
8 + 5521

72 n7 + 10415
96 n6 + 26417

288 n5 + 7303
192 n

4 + 5735
3024n

3 − 1273
336 n

2 − 11
12n

Dodecahedron
Wiener 601

7 n7 + 601
2 n6 + 416n5 + 1155

4 n4 + 625
6 n3 + 71

4 n
2 + 41

42n
Reverse Wiener 799

7 n7 + 599
2 n6 + 314n5 + 605

4 n4 + 143
6 n3 − 15

4 n
2 − 41

42n
HyperWiener 2349

28 n8 + 757
2 n7 + 8203

12 n6 + 1267
2 n5 + 321n4 + 263

3 n3 + 242
21 n

2 + 1
3n

Szeged 1623611
6048 n9 + 1623611

1344 n8 + 1231255
504 n7 + 93211

32 n6 + 630167
288 n5 + 64439

64 n4 + 806507
3024 n3 + 14869

336 n2 + 487
84 n

Decahedron
Wiener 121

504n
7 + 121

72 n
6 + 355

72 n
5 + 565

72 n
4 + 257

36 n
3 + 125

36 n
2 + 29

42n
Reverse Wiener 229

504n
7 + 179

72 n
6 + 415

72 n
5 + 455

72 n
4 + 89

36n
3 − 29

36n
2 − 29

42n
HyperWiener 7

72n
8 + 905

1008n
7 + 499

144n
6 + 1055

144 n
5 + 1327

144 n
4 + 493

72 n
3 + 49

18n
2 + 3

7n
Szeged 9115

72576n
9 + 9115

8064n
8 + 54451

12096n
7 + 1999

192 n
6 + 51751

3456 n
5 + 4975

384 n
4 + 26855

4536 n
3 + 2021

2016n
2 − 11

504n
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Table 25 Magic topological formulas for clusters, continued

fcc tetrahedron
Wiener 1

168n
7 + 1

12n
6 + 7

15n
5 + 4

3n
4 + 49

24n
3 + 19

12n
2 + 17

35n

Reverse Wiener 1
126n

7 + 1
12n

6 + 61
180n

5 + 7
12n

4 + 5
36n

3 − 2
3n

2 − 17
35n

HyperWiener 1
672n

8 + 3
112n

7 + 47
240n

6 + 3
4n

5 + 155
96 n

4 + 31
16n

3 + 499
420n

2 + 2
7n

Szeged 71
60480n

9 + 71
3360n

8 + 227
1440n

7 + 151
240n

6 + 4163
2880n

5 + 917
480n

4 + 20599
15120n

3 + 123
280n

2 + 1
30n

bcc tetrahedron

Wiener 1
21n

7 + 1
2n

6 + 21
10n

5 + 9
2n

4 + 31
6 n

3 + 3n2 + 24
35n

Reverse Wiener 4
63n

7 + 1
2n

6 + 287
180n

5 + 7
3n

4 + 37
36n

3 − 5
6n

2 − 24
35n

HyperWiener 1
42n

8 + 13
42n

7 + 587
360n

6 + 179
40 n

5 + 493
72 n

4 + 139
24 n

3 + 787
315n

2 + 89
210n

Szeged 1
81n

9 + 1
6n

8 + 176
189n

7 + 25
9 n

6 + 641
135n

5 + 83
18n

4 + 188
81 n

3 + 4
9n

2 − 4
315n

Diamond cubic

Wiener 7648
105 n

7 + 1912
15 n6 + 1792

15 n5 − 40
3 n

4 − 374
15 n

3 − 902
15 n

2 − 48
35n + 12

Reverse Wiener 12512
105 n7 + 1448

15 n6 + 548
15 n

5 − 392
3 n4 − 811

15 n
3 + 452

15 n
2 + 2043

35 n − 24

HyperWiener 472
5 n8 + 23648

105 n7 + 3976
15 n6 + 842

15 n
5 − 926

15 n
4 − 1219

15 n3 − 971
15 n

2 + 312
35 n + 18

Szeged 512
3 n9 + 5896

21 n8 + 208n7 − 1504
5 n6 + 503

5 n5 − 1n4 + 193n3 − 4721
105 n

2 − 574
15 n + 24

that the tabulated data may be succinctly summarized as
magic formulas. Also the degree of the polynomial of the
index follows the rules from 3D space [14]. Some topo-
logical indices for the Platonic solids have previously been
published [36]. From this reference, we verify the Wiener
index for all five solids for n = 1. The Wiener index
for rows of unit cells of the fcc lattice has been studied
[37], but our results cannot be compared since we study
clusters.

Dispersion
The percentage of surface atoms (dispersion, FE) of the
various clusters is presented in Fig. 2. Platinum nanoclus-
ters are known to have catalytic activity with respect to the
oxygen reduction reaction (ORR) which is size and shape
dependent [38]. This reference determined that platinum
cuboctahedral clusters of 2.2 nm in size had maximal
ORR activity. It is also known that for PtNi alloys the
(111) surface is preferred for the ORR [39]. We compare
the icosahedral, octahedral, decahedral, and cuboctahe-
dral clusters for FE at a drel = 7.5 for platinum at 2.2 nm.
The icosahedral, octahedral, and decahedral clusters have
surfaces with (111) faces. Using the power laws in Fig. 2,
we find for the given drel that the FE for icosahedral clus-
ters is 47.9%, for cuboctahedral 52.8%, and for decahedral
57.5% and that octahedral clusters have FE = 58.9%. Thus,
based on shape, the octahedral clusters have both the
(111) surface and the highest value of FE for a similar size.
Both the power law coefficient and exponent are relevant
for the determination of FE for small drel. The mathemat-
ical interpretation of the power law exponent gives the
physical significance as the relationship of the ordinate,

FE, to the abscissae, drel, or the relative percent change of
FE to the relative percent change of drel. The power law
coefficient is simply the value of FE when drel = 1.
Another research group has synthesized platinum alloy

icosahedral clusters and compared the activity with octa-
hedral ones [40]. These nanoclusters were about 13 nm
in size or N = 20, 000 for octahedral clusters and
N = 15, 000 for icosahedral clusters. This produces a
drel = 30 for the octahedral clusters and 25 for the icosa-
hedral ones. Using the relevant power laws, this gives
FE = 18.0% for the octahedral and 19.8% for the icosa-
hedral clusters. There is very little difference in FE for
this size of the cluster, but the icosahedral cluster has a
significant amount of strain due to twinning, which may
shift the d-band center, thus affecting the ORR results
[40]. However, given the size-dependent data of [38], it
may be suggested that smaller clusters would produce
still higher ORR data. Indeed, 4 nm Pt3Ni octahedra,
when doped with Mo, have produced record-high ORR
results [41].

Conclusions
We have studied 19 types of nanoclusters and some rel-
evant magic formulas for the number of atoms, bonds,
coordination numbers, and topological indices. These
include the fcc, bcc, hcp, the Platonic solids, diamond
cubic, simple cubic, and decahedral clusters. The majority
of these results are more detailed than previously deter-
mined, and a large number are enumerated for the first
time. A grand goal of materials-related research is the cor-
relation of structure with properties. This detailed study
of the magical relationships for nanoclusters is a step in
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Fig. 2 Dispersion FE for the nanoclusters

that direction. An example is the discussion of the disper-
sion of surface atoms and its relationship to catalytic activ-
ity. It is our intention that these results will aid scientists
in their studies of nanocluster structure and the associated
properties.
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